
488 Java Programming for A-level Computer Science

17 Indexed sequential files

In the previous chapter, we looked at the Random Access File method for accessing records in large

disc-based systems. Another approach to providing fast access to records on disc is to use an index,

similar to a telephone directory, which lists the records in alphabetical or numerical order. The

index then specifies the memory location on disc where each particular record can be found. This

system has the advantage that the index may be small enough to be held in the electronic main

memory of the computer. Searching the index should be very fast, and only one slow disc access

operation will be needed to load the required record.

The index will normally be a list of the key field values of the records in sorted order, providing a

pointer to the storage location of each record on disc. A possible approach is shown in this example:

Pointers may lead to single records. However, it is sometimes more efficient for records to be

grouped together in blocks on disc, as in the case of the three records beginning CF. The records can

be loaded from disc as a block, then placed in a buffer area in the electronic memory where the

required record will be extracted. To speed up this operation, the records within any block can be

stored in sequential order, so that a fast binary search can be carried out:

CF1344 ….. CF3479 CF5681 CF6922 ….. CF9235

The combination of an index, plus groups of records stored on disc in sequential order, gives the

name indexed sequential file for this type of storage system.

This system would work well for moderate numbers of records. However, if the number of records

becomes very large, then the process of searching the index itself could become slow. An

improvement is to reduce the number of search operations by providing several levels of index.

Suppose that customer records are numbered in the range 0000 to 9999. A three-level index system

could be set up, as shown in the diagram on the next page. Each Level 1 index block would give

access to ten Level 2 index blocks, and each Level 2 index block would in turn give access to ten Level

3 index blocks.

Product code Pointer

AW4582

 ………

CF3479

CF5681

CF6922

 ……….

WR6104

AW

CF

WR

 Chapter 17: Indexed sequential files 489

The record for customer 5473 is required. The search takes places in stages:

 The level 1 index is searched first, and this leads to the level 2 index block for records in the

range 5000 – 5999.

 The level 2 index block is searched next, and this leads to the level 3 index block for records

in the range 5400 – 5499.

 The level 3 index block is searched, and this gives the location of the block of records

5470 -5479 in the disc file.

 The block of records is loaded, and the required record 5473 is extracted.

For our next project, we will set up a three level indexed sequential file system for a travel agent to

handle records of holidays available. We will assume that the travel agent has a large number of

different dates, locations and accommodation choices available to customers, and each unique

combination is given a HolidayID number in the range 0000 – 9999.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name indexedFile, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the indexedFile project, and select New /

JFrame Form. Give the Class Name as indexedFile, and the Package as indexedFilePackage.

Key field Pointer

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

Key field Pointer

5900

5800

5700

5600

5500

5400

5300

5200

5100

5000

Key field Pointer

5490

5480

5470

5460

5450

5440

5430

5420

5410

5400

Key field Pointer

6900

 ….

6000

Key field Pointer

5590

 ….

5500

fast electronic main memory slow disc memory

Key field Pointer

4900

 …..

4000

Key field Pointer

5390

 ….

5300

5470 - 5479

level 1 index level 2 index level 3 index

490 Java Programming for A-level Computer Science

Click the Finish button to return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Select a Menu Bar component from the palette, then drag and drop this on the form. Right-click on

each of the menu items and change the captions to ‘Add record’ and ‘Find record’. Rename the

menu items as menuAddRecord and menuFindRecord.

We will now create the forms which will be linked to these menu items. Go to the Projects window

and right-click on the indexedFilePackage folder. Select New / JFrame Form. Set the Class Name to

‘addRecord’, leaving the Package name as indexedFilePackage.

Click the Finish button to open the new form.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Set the defaultCloseOperation property to ‘HIDE’.

 Chapter 17: Indexed sequential files 491

Repeat the steps above to create another new form with the Class Name ‘findRecord’, leaving the

Package name as indexedFilePackage. When the form opens, select Set layout / Absolute layout,

Form Size Policy / Generate pack() / Generate Resize code and defaultCloseOperation / ‘HIDE’.

Use the tab above the editing screen to return to the indexedFile.java page. Select the ‘Add record’

menu item, then go the Properties window and click the Events tab. Locate the mouseClicked event,

then accept menuAddRecordMouseClicked from the drop down list.

Add a line of code to the mouseClicked() method to open the addRecord form.

 private void menuAddRecordMouseClicked(java.awt.event.MouseEvent evt) {

 new addRecord().setVisible(true);

 }

Use the Design tab to return to the form layout view. Select the ‘Find record’ menu option. Go to
the Events list and select mouseClicked / menuFindRecordMouseClicked. Add a line of code to the
mouseClicked() method to open the findRecord form.

 private void menuFindRecordMouseClicked(java.awt.event.MouseEvent evt) {

 new findRecord().setVisible(true);

 }

Run the program. Check that each of the windows can be opened by clicking the corresponding

menu item, and that the windows can be closed again without exiting from the main program.

Close the program windows and return to the NetBeans screen. Use the tab above the editing

window to move to the addRecord.java page.

492 Java Programming for A-level Computer Science

Add components to the form, as shown below:

 A label ‘HolidayID (0000 – 9999)’, with a text field alongside. Rename the text field as

txtHolidayID.

 A label ‘Category’ with a Combo Box alongside. Rename the Combo Box as cmbCategory.

Select the Category Combo Box, then go to the Properties window and locate the model property.

Click the ellipsis (…) symbol at the end of the model property row to open an editing window. List

the categories of holiday: Activity holiday, Beach holiday, Touring, Cruise.

Add further components to the form:

 A label ‘Location’, with a text field alongside. Rename the text field as txtLocation.

 A label ‘Start date’. Place two Combo Boxes alongside, renaming these as cmbDay and

cmbMonth. Select each of the Combo Boxes in turn, clicking the ellipsis (…) symbol at the

end of the model property row to open the editing window. Enter the numbers 1 to 31 as

the drop down list options for cmbDay, and the month names Jan to Dec for cmbMonth as

shown below.

 A label ‘Days’, with a text field alongside. Rename the text field as txtDays.

 A label ‘Price’, with a text field alongside. Rename the text field as txtPrice.

 A button with the caption 'Enter'. Rename the button as btnEnter.

 Chapter 17: Indexed sequential files 493

Click the Source tab to move to the program code page. Go to the start of the program listing and

add the Java modules which will be needed for file handling and displaying message boxes.

package indexedFilePackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class addRecord extends javax.swing.JFrame {

 public addRecord() {
 initComponents();
 }

Click the Design tab to move to the form view. Double click the 'Enter' button to create a method.

Add a line of code to call a save() method. We will insert the save() method immediately below.

Add lines of code to save() which will check that the holiday code entered is four digits in length,

and contains no incorrect characters. Please note that the lines beginning:

 JOptionPane.showMessageDialog(…

should be entered as single lines of code with no line break.

 private void btnEnterActionPerformed(java.awt.event.ActionEvent evt) {

 save();

 }

 private void save()
 {
 String holidayCode=txtHolidayID.getText();
 holidayCode.trim();
 if (holidayCode.length()!=4)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "The holiday code must be four digits");
 }
 else
 {
 try
 {
 int holidayID = Integer.parseInt(holidayCode);
 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "Incorrect number format");

 }
 }
 }

Run the program, then select the 'Add record' menu option. Test the error trapping for HolidayID

numbers of incorrect length, or containing incorrect characters.

494 Java Programming for A-level Computer Science

Close the program and return to the NetBeans editing screen.

We will save the holiday data as fixed length records containing six fields. Suitable field sizes can be

allocated:

Locate the save() method. Add lines of code which will collect the holiday information from the

input components, set these to the correct fixed field lengths, then compile the fields into a record.

 private void save()

 {
 String holidayCode=txtHolidayID.getText();
 holidayCode.trim();
 if (holidayCode.length()!=4)
 {
 JOptionPane.showMessageDialog(addRecord.this,
 "The holiday code must be four digits");
 }
 else
 {

 try
 {
 int holidayID = Integer.parseInt(holidayCode);

 String category=cmbCategory.getSelectedItem().toString();
 String location=txtLocation.getText();
 String startDate=cmbDay.getSelectedItem()+" "+cmbMonth.getSelectedItem();
 String days=txtDays.getText();
 String price=txtPrice.getText();

 holidayCode=String.format("%-10s", holidayID);
 category=String.format("%-20s", category);
 location=String.format("%-60s", location);
 startDate=String.format("%-10s", startDate);
 days=String.format("%-10s", days);
 price=String.format("%-10s", price);
 String holidayRecord= holidayCode+category+location+startDate+days+price;

 }
 catch(NumberFormatException e)
 {

Two files will be needed to operate the indexed file system: one to hold the index, and the other to

hold the actual holiday records. The file names should be available to all parts of the program, so it

is best to define these as global variables in a data class.

Go to the Projects window at the top left of the screen, and right-click on the indexedFilePackage

folder. Select New / Java Class. Set the Class Name as 'data', leaving the Package name as

indexedFilePackage, as shown below.

HolidayID Category Location Start Date Days Price

10 bytes 20 bytes 60 bytes 10 bytes 10 bytes 10 bytes

 Chapter 17: Indexed sequential files 495

Click the Finish button to open the data class file. Add names for the index and holiday data files.

package indexedFilePackage;

public class data {

 public static String indexFile = "index.dat";
 public static String holidayFile = "holidays.dat";

}

To develop the holiday records system, we will now work through the steps required to store a

record with a HolidayID value of 5473, as in the example at the start of this chapter.

The indexed file system begins with a Level 1 index which should contain the entries '0000, 1000,

2000, … 9000'. This will be created when the program is first run.

Use the tab above the editing screen to move to the indexedFile.java page. Click the Source tab to

move to the program code view. We will add lines of code which:

 Include Java modules needed for file operations.

 Check whether an index file already exists. If not, a method is called to create the index.

 Begin the createIndexFile() method immediately underneath.

496 Java Programming for A-level Computer Science

Add a loop to the the createIndexFile() method which will:

 Add a caption 'Block 0' to the file.
 Generate numbers at intervals of 1000, and insert these into the index.
 Add a link value of -1 for each location, to show that we have not yet set up any

connections to level 2 index blocks.

 package indexedFilePackage;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class indexedFile extends javax.swing.JFrame {

 public indexedFile() {
 initComponents();

 File f = new File(data.indexFile);
 if(f.exists()==false)
 {
 createIndexFile();
 }

 }

 private void createIndexFile()
 {

 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "rw"))
 {

 String blockNumber="Block 0";
 blockNumber=String.format("%-10s", blockNumber);
 file.write(blockNumber.getBytes());
 for (int i=0; i<10; i++)
 {
 String locationNumber=String.format("%-10s", i*1000);
 String link=String.format("%-10s", "-1");
 String indexRecord=locationNumber+link;
 int position=i*20+10;
 file.seek(position);
 file.write(indexRecord.getBytes());
 }

 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(indexedFile.this, "File error");
 }

 }

Run the program. Use Windows Explorer to locate the index.dat file in the indexedFile project
folder. Open index.dat with a text editing application such as Notepad. Check that the sequence of
file locations has been created correctly, with a -1 pointer value for each.

 Chapter 17: Indexed sequential files 497

For a very large indexed file application, there could be many Level 2 index blocks, and many more

Level 3 index blocks. Even in our relatively small project, there are potentially 111 index bocks.

Rather than create all these index blocks initially, the program will only add index blocks when they

are actually required by the records in the system.

Close the program window and return to NetBeans. Use the tab above the editing screen to open

the addRecord.java page. Locate the save() method.

Once a holiday record has been entered, we will call a method to search the current index blocks for

the holidayID value which has been entered. If the required index blocks do not yet exist, then they

will be created. For our example record 5473, a level 2 index block will be needed with entries from

5000 to 5900.

Add a line of code to call a searchIndex() method

 startDate=String.format("%-10s", startDate);
 days=String.format("%-10s", days);
 price=String.format("%-10s", price);

 String holidayRecord= holidayCode+category+location+startDate+days+price;

 searchIndex(holidayID);

 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(addRecord.this,"Incorrect number format");
 }
 }
 }

Insert the searchIndex() method immediately underneath the save() method. This begins with a

search of the Level 1 index.

 The Level 1 table entry for the HolidayID value is calculated. Using our example, the

relevant Level 1 index entry for HolidayID 5473 is 5000.

 We then use a method getPointer() to return the link value corresponding to this location.

 private int searchIndex(int holidayID)
 {
 int dataBlock = -1;
 int level1=(holidayID /1000)*1000;
 int indexBlock=0;
 int pointer=getPointer(indexBlock,level1);

 return dataBlock;
 }

498 Java Programming for A-level Computer Science

Begin the getPointer() method immediately below the searchIndex() method. This will open the
index file and collect the Level 1 index block. The method then checks each of the entries in the
index block until the required location number is found, and returns the corresponding pointer
value.

 private int getPointer(int indexBlock, int searchValue)
 {
 int pointer=0;
 byte[] bytes=null;
 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "r"))
 {
 bytes = new byte[210];
 file.seek(indexBlock*210);
 file.read(bytes);
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 String s = new String(bytes);
 int location;
 String w,x;
 s=s.substring(10);
 int i=0;
 boolean found=false;
 while(found==false)
 {
 w=s.substring(0,10);s=s.substring(10);
 x=s.substring(0,10);s=s.substring(10);
 location=Integer.parseInt(w.trim());
 pointer=Integer.parseInt(x.trim());
 if (location==searchValue)
 {
 found=true;
 }
 i++;
 }
 return pointer;
 }

If we were to enter a test record using HolidayID value 5473, the Level 1 index would be searched
for location 5000, then a pointer value of -1 would be returned to indicate that there is no Level 2
index block yet. We will now arrange for the program to create the level 2 index block.

Locate the searchIndex() method, then add lines of code which check for a pointer value less than
zero. If a negative pointer value is found, a createIndexBlock()method will be called.

Insert the createIndexBlock() method immediately below the searchIndex() method.

 Chapter 17: Indexed sequential files 499

 private int searchIndex(int holidayID)
 {
 int dataBlock = -1;
 int level1=(holidayID /1000)*1000;
 int indexBlock=0;
 int pointer=getPointer(indexBlock,level1);

 if (pointer<0)
 {
 pointer=createIndexBlock(level1, indexBlock, 2);
 }

 return dataBlock;
 }

 private int createIndexBlock(int base, int previous, int indexLevel)
 {
 int blockCount=0;
 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "rw"))
 {
 blockCount= (int) (file.length() /210);
 String blockNumber="Block "+blockCount;
 blockNumber=String.format("%-10s", blockNumber);
 int startPosition=blockCount*210;
 file.seek(startPosition);
 file.write(blockNumber.getBytes());
 int multiplier;
 if (indexLevel==2)
 {
 multiplier=100;
 }
 else
 {
 multiplier=10;
 }
 for (int i=0; i<10; i++)
 {
 String locationNumber=String.format("%-10s",base+ i*multiplier);
 String link=String.format("%-10s", "-1");
 String indexRecord=locationNumber+link;
 int position=startPosition + i*20+10;
 file.seek(position);
 file.write(indexRecord.getBytes());
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 return blockCount;
 }

500 Java Programming for A-level Computer Science

The searchIndex() method has carried out various tasks:

 The number of index blocks currently in the index file is found.

 The next available block number is allocated to the index block we are now creating, and this
is stored into the file as the first line of the new index block.

 The interval between the index entries is found from the index level:
 level 2 index entries are at intervals of 100, such as the sequence 5000, 5100, 5200…
 level 3 index entries are at intervals of 10, such as the sequence 5400, 5410, 5420…

 A loop creates the 10 entries in the index, setting all the link pointers to values of -1.

Referring back to the diagram of the index system, you will see that we have one last task to
complete.

The level 1 index entry must have a link pointer set to the new level 2 index block. Add lines of
code to the createIndexBlock() method to access the level 1 index block and reset the link pointer
value.

 for (int i=0; i<10; i++)

 {
 String locationNumber=String.format("%-10s",base+ i*multiplier);
 String link=String.format("%-10s", "-1");
 String indexRecord=locationNumber+link;
 int position=startPosition + i*20+10;
 file.seek(position);
 file.write(indexRecord.getBytes());
 }

 startPosition=previous*210;
 int row;
 if(indexLevel==2)
 {
 row=base /1000;
 }
 else
 {
 row=base/100;
 row=row % 10;
 }
 String link =Integer.toString(blockCount);
 link=String.format("%-10s", link);
 file.seek(startPosition+row*20 + 20);
 file.write(link.getBytes());

 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }

 Chapter 17: Indexed sequential files 501

Run the program. Select the 'Add record' menu option. Enter a HolidayID value of 5473, then click
the 'Enter' button.

Use Windows Explorer to locate the index.dat file in the indexedFile project folder. Open the file

using a text editing application.

Carefully check the entries in the file:

 We now have two index blocks:

 Block 0 is the level 1 index with location entries from 0 to 9000

 Block 1 is the level 2 index with location entries from 5000 to 5900

 The 5000 location entry in Block 0 has a pointer value of 1, linking it to Block 1.

Close the program windows and return to the NetBeans editing screen.

We now need to create a level 3 index block to complete the access sequence for record 5473:

Key field Pointer

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

Key field Pointer

5900

5800

5700

5600

5500

5400

5300

5200

5100

5000

Key field Pointer

5490

5480

5470

5460

5450

5440

5430

5420

5410

5400

502 Java Programming for A-level Computer Science

We will add code to the searchIndex() method to create the level 3 index for the range of locations

from 5400 to 5490.

 private int searchIndex(int holidayID)
 {
 int dataBlock = -1;
 int level1=(holidayID /1000)*1000;
 int indexBlock=0;
 int pointer=getPointer(indexBlock,level1);
 if (pointer<0)
 {
 pointer=createIndexBlock(level1, indexBlock, 2);
 }

 int level2=(holidayID /100)*100;
 indexBlock=pointer;
 pointer=getPointer(indexBlock,level2);
 if (pointer<0)
 {
 pointer=createIndexBlock(level2, indexBlock, 3);
 }

 return dataBlock;
 }

Run the program. Select the 'Add record' menu option. Enter the HolidayID value of 5473, then click
the 'Enter' button.

Use Windows Explorer to locate the index.dat file in the indexedFile project folder. Open the file

using a text editing application. We now have three index blocks, connected by link pointers:

 Block 0 is the level 1 index block with entries from 0 to 9000

 Block 1 is a level 2 index block with entries from 5000 to 5900

 Block 2 is a level 3 index block with entries from 5400 to 5490

 Chapter 17: Indexed sequential files 503

We now have a complete three level index sequence, and are ready to save the holiday record in the
Holidays data file.

Close the program windows and return to the NetBeans editing screen. Locate the searchIndex()
method. We will now add lines of code which will check whether a data block exists yet for the
holiday record to be stored. Each data block will have space for a sequence of 10 records. The
holiday with ID number 5473 will be stored within the data block for records numbered 5470 to
5479.

If a data block does not exist yet, it will be created by the createDataBlock() method.

 private int searchIndex(int holidayID)
 {
 int dataBlock = -1;
 int level1=(holidayID /1000)*1000;
 int indexBlock=0;
 int pointer=getPointer(indexBlock,level1);
 if (pointer<0)
 {
 pointer=createIndexBlock(level1, indexBlock, 2);
 }
 int level2=(holidayID /100)*100;
 indexBlock=pointer;
 pointer=getPointer(indexBlock,level2);
 if (pointer<0)
 {
 pointer=createIndexBlock(level2, indexBlock, 3);
 }

 int level3=(holidayID /10)*10;
 indexBlock=pointer;
 pointer=getPointer(indexBlock,level3);
 if (pointer<0)
 {
 pointer=createDataBlock(level3, indexBlock);
 }
 dataBlock=pointer;

 return dataBlock;
 }

Key field Pointer

9000

8000

7000

6000

5000

4000

3000

2000

1000

0000

Key field Pointer

5900

5800

5700

5600

5500

5400

5300

5200

5100

5000

Key field Pointer

5490

5480

5470

5460

5450

5440

5430

5420

5410

5400

5470 - 5479

504 Java Programming for A-level Computer Science

Add the createDataBlock() method immediately below the searchIndex() method.

 private int createDataBlock(int base, int previous)
 {
 int blockCount=-1;

 try (RandomAccessFile file = new RandomAccessFile(data.holidayFile, "rw"))
 {
 blockCount= (int) (file.length() /1210);
 String blockNumber="Block "+blockCount;
 blockNumber=String.format("%-10s", blockNumber);
 int startPosition=blockCount*1210;
 file.seek(startPosition);
 file.write(blockNumber.getBytes());
 for (int i=0; i<10; i++)
 {
 String locationNumber=String.format("%-120s",base+ i);
 String holidayRecord=locationNumber;
 int position=startPosition + i*120+10;
 file.seek(position);
 file.write(holidayRecord.getBytes());
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 return blockCount;
 }

Run the program. Select the 'Add record' menu option. Enter the holidayID value of 5473, then click
the 'Enter' button. Use Windows Explorer to locate the holidays.dat file in the indexedFile project
folder. Open the file using a text editing application. This file should contain a data block labelled
Block 0, with space for inserting holiday records numbered 5470 to 5479.

Close the program windows and return to the NetBeans editing screen.

Before continuing, close the text editing application and delete the two data files holidays.dat and

index.dat from the indexedFile folder. The program will recreate these files shortly when we carry

out the final testing.

 Chapter 17: Indexed sequential files 505

Locate the createDataBlock() method which you have just written. We will now add lines of code

to link the level 3 index block pointer to the data block where our holiday record will be stored.

 for (int i=0; i<10; i++)
 {
 String locationNumber=String.format("%-120s",base+ i);
 String holidayRecord=locationNumber;
 int position=startPosition + i*120+10;
 file.seek(position);
 file.write(holidayRecord.getBytes());
 }
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }

 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "rw"))
 {
 int startPosition=previous*210;
 int row;
 row=base/10;
 row=row % 10;
 String link =Integer.toString(blockCount);
 link=String.format("%-10s", link);
 file.seek(startPosition+row*20 + 20);
 file.write(link.getBytes());
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }

 return blockCount;
 }

Run the program. Select the 'Add record' menu option. Again enter the HolidayID value of 5473,
then click the 'Enter' button. Use Windows Explorer to locate the index.dat file in the indexedFile
project folder. Open the file using a text editing application. The link pointer for the entry 5470 in
Block 2 should now have been reset to 0, so that data Block 0 will be accessed.

506 Java Programming for A-level Computer Science

Close the program windows and return to the NetBeans editing screen. The final step is to save the
holiday record into the data block at the storage location for HolidayID 5473.

Locate the save() method. We are going to change the line 'searchIndex(holidayID) ' to read:
 int dataBlock = searchIndex(holidayID)
then then add a line which calls a storeRecord() method.

 try
 {
 int holidayID = Integer.parseInt(holidayCode);
 String category=cmbCategory.getSelectedItem().toString();
 String location=txtLocation.getText();
 String startDate=cmbDay.getSelectedItem()+" "+cmbMonth.getSelectedItem();
 String days=txtDays.getText();
 String price=txtPrice.getText();
 holidayCode=String.format("%-10s", holidayID);
 category=String.format("%-20s", category);
 location=String.format("%-60s", location);
 startDate=String.format("%-10s", startDate);
 days=String.format("%-10s", days);
 price=String.format("%-10s", price);
 String holidayRecord= holidayCode+category+location+startDate+days+price;

 int dataBlock=searchIndex(holidayID);
 storeRecord(dataBlock, holidayID, holidayRecord);
 JOptionPane.showMessageDialog(addRecord.this,"Record saved");

 }
 catch(NumberFormatException e)
 {

Add the storeRecord() method immediately below the save() method. This method has three
parameters:

 dataBlock is the number of the data block where the record is to be stored. For our test
record, this will be Block 0.

 holidayID, in our case 5473, will indicate which location within the data block should be
used to store the record.

 holidayRecord is the actual record, containing the holiday category, holiday location, date,
legth of holiday and price.

 private void storeRecord(int dataBlock, int holidayID, String holidayRecord)
 {
 try (RandomAccessFile file = new RandomAccessFile(data.holidayFile, "rw"))
 {
 int startPosition=dataBlock*1210;
 int location = holidayID %10;
 int fileposition=startPosition + location*120 + 10;
 file.seek(fileposition);
 file.write(holidayRecord.getBytes());
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(addRecord.this, "File error");
 }
 }

 Chapter 17: Indexed sequential files 507

Run the program. Select the 'Add record' menu option. Enter a HolidayID value of 5473, then
complete the full set of data fields for the holiday record. Click the ‘Enter’ button. A ‘Record saved’
message should appear.

Use Windows Explorer to locate the holidays.dat file in the indexedFile project folder. Open the file
using a text editing application. This file should contain a data block labelled Block 0, with space for
inserting holiday records numbered 5470 to 5479. The holiday details which you entered should be
present at location 5473 in the file.

Close the program windows and return to the NetBeans editing screen.

508 Java Programming for A-level Computer Science

If all has gone well, the program should be storing the holiday records and index values correctly,
but it is not very easy to examine the data. We will now add tables to the program screen display, to
show the structure of the multi-indexed system more clearly.

Use the tab above the editing screen to move to the indexedFile.java page, then click the Design tab
to view the form layout screen. Add a Table component to the screen, renaming this as
tblLevelOne. Locate the model property for the table, and click to open the editing window.

Set the number of Rows to 10, and Columns to 2. Enter the column headings and data types:
 HolidayID Integer
 Pointer Integer
Remove the 'Editable' ticks from both entries and then click the OK button.

Add a label 'Level 1 index' above the table, along with a text field. Rename the text field as
txtLevelOne. Add a button below the table with the caption 'Refresh'. Rename the button as
btnRefresh.

 Chapter 17: Indexed sequential files 509

Copy the label, text field and table components twice more:

The labels should display the captions:

 Level 1 index Level 2 index Level 3 index

The text fields and tables should be named:

 txtLevelOne txtLevelTwo txtLevelThree

 tblLevelOne tblLevelTwo tblLevelThree

Click the Source tab to move to the program code screen. Go to the top of the program listing and

add the Java module which will be needed to operate the List component.

package indexedFilePackage;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

import javax.swing.DefaultListModel;

public class indexedFile extends javax.swing.JFrame {

Click the Design tab to move to the form, then double click the 'Refresh' button to create a method,

then add a line of code to call a displayIndexBlock() method. Insert the displayIndexBlock()

method immediately below the button click method. This method has two parameters: the index

block which is to be displayed, and the number of the table where the display will appear.

 private void btnRefreshActionPerformed(java.awt.event.ActionEvent evt) {

 displayIndexBlock(0,1);

 }

 private void displayIndexBlock(int block, int indexLevel)
 {
 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "r"))
 {
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(indexedFile.this, "File error");
 }
 }

510 Java Programming for A-level Computer Science

Add lines of code to the displayIndexBlock() method which will:

 Load the required index block from the index.dat file.

 Display the number of the index block in the text field above the table.

 Carry out a loop 10 times to insert the storage location numbers into the table.

 Display any link pointer values which have been set.

 private void displayIndexBlock(int block, int indexLevel)
 {
 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "r"))
 {

 byte[] bytes = new byte[210];
 file.seek(block*210);
 file.read(bytes);
 file.close();
 String index=new String(bytes);
 String blockNumber =index.substring(0,10); index=index.substring(10);
 switch (indexLevel)
 {
 case 1: txtLevelOne.setText(blockNumber); break;
 case 2: txtLevelTwo.setText(blockNumber); break;
 case 3: txtLevelThree.setText(blockNumber); break;
 }

 for (int i=0; i<10; i++)
 {
 String locationNumber=index.substring(0,10); index=index.substring(10);
 String link=index.substring(0,10); index=index.substring(10);
 switch (indexLevel)
 {
 case 1: tblLevelOne.setValueAt(locationNumber,9-i,0); break;
 case 2: tblLevelTwo.setValueAt(locationNumber,9-i,0); break;
 case 3: tblLevelThree.setValueAt(locationNumber,9-i,0); break;
 }

 int n=Integer.parseInt(link.trim());
 if (n>=0)
 {
 switch (indexLevel)
 {
 case 1: tblLevelOne.setValueAt(link,9-i,1); break;
 case 2: tblLevelTwo.setValueAt(link,9-i,1); break;
 case 3: tblLevelThree.setValueAt(link,9-i,1); break;
 }
 }
 }

 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(indexedFile.this, "File error");
 }
 }

 Chapter 17: Indexed sequential files 511

Run the program, then click the ‘Refresh’ button. The Level 1 index should be shown with storage
locations numbered at intervals of 1000, from 0 to 9000. Pointer values to Level 2 index blocks will
appear for any holiday records which have now been entered.

Close the program window and return to the NetBeans editing screen.

Click the Design tab to move to the form layout view. We will now set up a method which will
display a Level 2 index block when the corresponding Level 1 table entry is clicked. Select the Level
1 table, then go to the Properties window and click the Events tab. Locate the mouseClicked event,
and accept tblLevelOneMouseClicked from the drop down list.

Add lines of code to the mouseClicked() method which will:

 Clear any previous entries in the Level 2 and Level 3 tables.

 Find which row of the Level 1 table has been clicked, and obtain the link pointer value in the
right hand column of that row.

 Call the displayIndexBlock() method to display this Level 2 index block.

 private void tblLevelOneMouseClicked(java.awt.event.MouseEvent evt) {

 clearTable2();
 clearTable3();
 try
 {
 int row = tblLevelOne.rowAtPoint(evt.getPoint());
 if (tblLevelOne.getValueAt(row,1)!=null)
 {
 String link=(String) tblLevelOne.getValueAt(row,1);
 int linkBlock=Integer.parseInt(link.trim());
 displayIndexBlock(linkBlock,2);
 }
 }
 catch(NumberFormatException e)
 {
 }

 }

512 Java Programming for A-level Computer Science

Add the methods to clear the Level 2 and Level 3 tables immediately below the mouseClicked()
method.

 private void clearTable2()
 {
 for (int i=0;i<10;i++)
 {
 tblLevelTwo.setValueAt("",i,0);
 tblLevelTwo.setValueAt("",i,1);
 }
 }

 private void clearTable3()
 {
 for (int i=0;i<10;i++)
 {
 tblLevelThree.setValueAt("",i,0);
 tblLevelThree.setValueAt("",i,1);
 }
 }

Run the program, then click the ‘Refresh’ button. The Level 1 index should be shown, with a pointer
value of 1 for the entry at 5000. Click on this row of the table.

Index block 1 should now be displayed in the Level 2 table, with a link pointer shown for the entry at
5400.

Close the program window and return to the NetBeans editing screen, then click the Design tab.
Select the Level 2 table, then go to the Events list in the Properties window. Locate the
mouseClicked event, and accept tblLevelTwoMouseClicked from the drop down list.

 Chapter 17: Indexed sequential files 513

Add lines of code to the mouseClicked() method:

 private void tblLevelTwoMouseClicked(java.awt.event.MouseEvent evt) {

 clearTable3();
 try
 {
 int row = tblLevelTwo.rowAtPoint(evt.getPoint());
 if (tblLevelTwo.getValueAt(row,1)!=null)
 {
 String link=(String) tblLevelTwo.getValueAt(row,1);
 int linkBlock=Integer.parseInt(link.trim());
 displayIndexBlock(linkBlock,3);
 }
 }
 catch(NumberFormatException e)
 {
 }

 }

Run the program, then click the ‘Refresh’ button. The Level 1 index should be shown, with a pointer
value for the entry at 5000. Click on this row of the table.

The Level 2 index should now appear, with a pointer value for the entry at 5400. Click on this row of
the table.

Entries should now appear in the Level 3 table, with a link pointer to the data block containing
records in the range 5470 – 5479.

Close the program window and return to the NetBeans editing screen. Use the Design tab to move
to the form layout view.

514 Java Programming for A-level Computer Science

Add a List component to the form below the three tables. This will be used to display the holiday
records found in the data block after a search through the three index levels. Rename the List as
lstHolidayRecords.

Select the Level 3 table. Go to the Events tab and select the mouseClicked event. Accept
tblLevelThree MouseClicked from the drop down list. Add lines of code which will:

 Clear any previous entries in the list box.

 Find which row of the Level 3 table has been clicked, and obtain the link pointer value in
the right hand column of that row.

 Call the displayDataBlock() method to display the selected group of 10 holiday records.

 private void tblLevelThreeMouseClicked(java.awt.event.MouseEvent evt) {

 clearList();
 try
 {
 int row = tblLevelThree.rowAtPoint(evt.getPoint());
 if (tblLevelThree.getValueAt(row,1)!=null)
 {
 String link=(String) tblLevelThree.getValueAt(row,1);
 int linkBlock=Integer.parseInt(link.trim());
 displayDataBlock(linkBlock);
 }
 }
 catch(NumberFormatException e)
 {
 }

 }

 Chapter 17: Indexed sequential files 515

Insert the clearList() method below the LevelThreeMouseClicked() method.

 private void clearList()
 {
 DefaultListModel listModel = new DefaultListModel();
 listModel.clear();
 lstHolidayRecords.setModel(listModel);
 }

Finally add the displayDataBlock() method below the clearList() method. This method will:

 Load the required data block from the holidays.dat file.

 Carry out a loop to display each of the 10 records in the data block, splitting each record into
its fields: holidayID, holiday category and location, start date and length of holiday, and
the price.

 private void displayDataBlock(int block)
 {
 DefaultListModel listModel = new DefaultListModel();
 String s;
 try (RandomAccessFile file = new RandomAccessFile(data.holidayFile, "r"))
 {
 byte[] bytes = new byte[1210];
 file.seek(block*1210);
 file.read(bytes);
 file.close();
 s=new String(bytes);
 file.close();
 String blockNumber =s.substring(0,10); s=s.substring(10);
 listModel.addElement(blockNumber);
 for (int i=0; i<10; i++)
 {
 String holidayID=s.substring(0,10); s=s.substring(10);
 listModel.addElement("HolidayID: "+holidayID);
 String category=s.substring(0,20); s=s.substring(20);
 listModel.addElement(category);
 String location=s.substring(0,60); s=s.substring(60);
 listModel.addElement(location);
 String startDate=s.substring(0,10); s=s.substring(10);
 listModel.addElement(startDate);
 String days=s.substring(0,10); s=s.substring(10);
 listModel.addElement(days);
 String price=s.substring(0,10); s=s.substring(10);
 listModel.addElement(price);
 listModel.addElement(" ");
 listModel.addElement("_______________________");
 listModel.addElement(" ");
 }
 lstHolidayRecords.setModel(listModel);
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(indexedFile.this, "File error");
 }
 }

516 Java Programming for A-level Computer Science

Run the program. Click the ‘Refresh’ button, then work through the series of index levels to reach
the data block for record 5473. Check that the fields of this record are shown correctly in the List.

Add further holiday records using the ‘Add record’ menu option. Choose holidayID values spread
over the range of possible numbers from 0000 to 9999. After each new record is entered, click the
‘Refresh’ button on the main program page and check that this record can be accessed through the
menu system.

 Chapter 17: Indexed sequential files 517

Close the program windows and return to the NetBeans editing screen. Our last task is to provide a
page where records can be displayed, then updated or deleted as required.

Use the tab above the editing screen to move to the findRecord.java page. Add components to the
form as shown:

 A label ‘HolidayID (0000 – 9999)’, with a text field alongside. Rename the text field as

txtHolidayID. Alongside the text field add a button with the caption ‘Find record’. Rename

the button as btnFindRecord.

 A label ‘Category’ with a Combo Box alongside. Rename the Combo Box as cmbCategory.

Select the Combo Box and click the ellipsis (…) symbol at the end of the model property row

to open an editing window. List the categories of holiday: Activity holiday, Beach holiday,

Touring, Cruise.

 A label ‘Location’, with a text field alongside. Rename the text field as txtLocation.

 A label ‘Start date’. Place two Combo Boxes alongside, renaming these as cmbDay and

cmbMonth. Select each of the Combo Boxes in turn, clicking the ellipsis (…) symbol at the

end of the model property row to open the editing window. Enter the numbers 1 to 31 as

the drop down list options for cmbDay, and the month names Jan to Dec for cmbMonth.

 A label ‘Days’, with a text field alongside. Rename the text field as txtDays.

 A label ‘Price’, with a text field alongside. Rename the text field as txtPrice.

 Buttons with the captions 'Update record' and ‘Delete record’. Rename the buttons as

btnUpdate and btnDelete.

Use the Source tab to move to the program code page. We will add Java modules at the beginning

of the program listing which will be needed for file handling, and to display message boxes. Also add

variables which will be needed by the program, as shown below.

518 Java Programming for A-level Computer Science

package indexedFilePackage;

import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;

public class findRecord extends javax.swing.JFrame {

 int holidayID = -1;
 int dataBlock;

 public findRecord() {
 initComponents();
 }

Use the Design tab to return to the form layout view. Double click the ‘Find record’ button to create
a method, then add a line of code to call a findRecord() method.

 private void btnFindRecordActionPerformed(java.awt.event.ActionEvent evt) {

 findRecord();

 }

Add the findRecord() method immediately below the buttonClick method. This method will:

 obtain the holidayID from the input text field,

 check that the holidayID number has a correct format,

 call a searchIndex() method to find the location of the data block containing the required
record, then

 load the data block and display the required record.

 private void findRecord()
 {
 String holidayCode=txtHolidayID.getText();
 holidayCode.trim();
 if (holidayCode.length()!=4)
 {
 JOptionPane.showMessageDialog(findRecord.this,
 "The holiday code must be four digits");
 }
 else
 {
 try
 {
 holidayID = Integer.parseInt(holidayCode);
 dataBlock=searchIndex(holidayID);
 displayRecord(holidayID, dataBlock);
 }
 catch(NumberFormatException e)
 {
 JOptionPane.showMessageDialog(findRecord.this,
 "Incorrect number format");
 }
 }
 }

 Chapter 17: Indexed sequential files 519

Please note that the lines beginning ‘JOptionPane.showMessageDialog(…’ in the findRecord()
method should be entered as single lines of code with no line breaks.

Insert the searchIndex() method below the findRecord() method. This uses a similar search
method to the main program page, working through each of the index levels in turn, and then
returning the number of the data block where the required record is stored.

 private int searchIndex(int holidayID)
 {
 int pointer=-1;
 int level1=(holidayID /1000)*1000;
 int indexBlock=0;
 pointer=getPointer(indexBlock,level1);
 if (pointer>0)
 {
 int level2=(holidayID /100)*100;
 indexBlock=pointer;
 pointer=getPointer(indexBlock,level2);
 if (pointer>0)
 {
 int level3=(holidayID /10)*10;
 indexBlock=pointer;
 pointer=getPointer(indexBlock,level3);
 }
 }
 return pointer;
 }

The searchIndex() method in turn requires a getPointer() method. We will insert this below the
searchIndex() method. GetPointer() has two parameters:

 indexBlock, which is the number of the index block being searched

 searchValue, which is the location number required.

Begin the method by adding lines of code to open the index file and collect the required index block.

 private int getPointer(int indexBlock, int searchValue)
 {
 int pointer=0;
 byte[] bytes=null;
 try (RandomAccessFile file = new RandomAccessFile(data.indexFile, "r"))
 {
 bytes = new byte[210];
 file.seek(indexBlock*210);
 file.read(bytes);
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 return pointer;
 }

520 Java Programming for A-level Computer Science

We will now add code to the getPointer() method to check each of the entries in the index block
until the required location value is found. The method then returns the link pointer corresponding
to this location.

 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }

 String s = new String(bytes);
 int location;
 String w,x;
 s=s.substring(10);
 boolean found=false;
 while(found==false)
 {
 w=s.substring(0,10);s=s.substring(10);
 x=s.substring(0,10);s=s.substring(10);
 location=Integer.parseInt(w.trim());
 pointer=Integer.parseInt(x.trim());
 if (location==searchValue)
 {
 found=true;
 }
 }

 return pointer;
 }

We now know the data block number containing the required holiday record. The final step is to
load and display the record.

Begin a displayRecord() method immediately below the getPointer() method. This has two
parameters:

 holidayID, which is the ID number of the required holiday record.

 dataBlock, which is the number of the data block where this record is stored.

Add lines of code which will load the required record from the holidays.dat file.

 private void displayRecord(int holidayID, int dataBlock)
 {
 String s;
 try (RandomAccessFile file = new RandomAccessFile(data.holidayFile, "r"))
 {
 byte[] bytes = new byte[110];
 int position=holidayID % 10;
 file.seek(dataBlock*1210+ position*120 + 20);
 file.read(bytes);
 file.close();
 s=new String(bytes);
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

 Chapter 17: Indexed sequential files 521

The essential lines of code to carry out this operation are:

byte[] bytes = new byte[110]
 The fields of the record which are being loaded have a total size of 110 bytes:

int position=holidayID % 10

We find the sequence number of the required record within the data block by calculating the
remainder when the holidayID is divided by 10. The % sign is the Java MOD operator, used to
calculate a remainder during division.
For example:
 5473 MOD 10 = 3, so the holiday with ID number 5473 will be at position 3 within the
 data block.

file.seek(dataBlock*1210+ position*120 + 20)
The start position of the required record, measured in bytes from the start of the holidays.dat
file, is calculated. The result is made up from:
 1210 bytes missed for each data block before the required block.
 Once the start of the required block is reached,
 10 bytes missed because of the block heading, e.g. 'Block 0', which occurs before the
 records start.
 120 bytes missed for each record which occur before the required record.
 10 bytes missed because we do not need to load the HolidayID value. This is already
 known.

file.read(bytes)
 Loads 110 bytes for the required fields of the record.

We can now insert lines of code to display the fields of the record in the combo boxes and edit boxes
on the form.

 file.close();
 s=new String(bytes);
 file.close();

 String category=s.substring(0,20); s=s.substring(20);
 cmbCategory.setSelectedItem(category.trim());
 String location=s.substring(0,60); s=s.substring(60);
 txtLocation.setText(location.trim());
 String startDate=s.substring(0,10); s=s.substring(10);
 String day=startDate.substring(0,3); startDate=startDate.substring(3);
 String month=startDate.trim();
 day=day.trim();
 cmbDay.setSelectedItem(day);
 cmbMonth.setSelectedItem(month);
 String days=s.substring(0,10); s=s.substring(10);
 txtDays.setText(days);
 String price=s.substring(0,10);
 txtPrice.setText(price);

 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

Category Location Start Date Days Price

20 bytes 60 bytes 10 bytes 10 bytes 10 bytes

522 Java Programming for A-level Computer Science

Run the program. Click the 'Refresh' button on the min page and use the tables to locate a holiday
record.

Select the 'Find record' menu option. Enter the corresponding HolidayID number in the text field,
then click the 'Find record' button. Check that the holiday details are displayed correctly on the
form.

Test the loading of each of the other holiday records which you have entered.

Close the program windows and return to the NetBeans editing screen. We will now produce the
method to update records.

Use the Design tab to move to the form layout view. Double click the 'Update record' button to
create a method. Add a line of code to call an update() method.

 private void btnUpdateActionPerformed(java.awt.event.ActionEvent evt) {

 update();

 }

We will insert the update() method immediately below the button click method, as shown below.
The method collects the data from the combo boxes and text fields on the form, assembles this into
a complete record, then calls a storeRecord() method to transfer the updated record back into the
data block.

Notice that we are not allowing the holidayID field to be changed. If the user has made an error in
entering this field, the record must be deleted and re-entered with a correct holidayID value.

 Chapter 17: Indexed sequential files 523

 private void update()
 {
 if (holidayID>=0)
 {
 String category=cmbCategory.getSelectedItem().toString();
 String location=txtLocation.getText();
 String startDate=cmbDay.getSelectedItem()+" "+cmbMonth.getSelectedItem();
 String days=txtDays.getText();
 String price=txtPrice.getText();
 category=String.format("%-20s", category);
 location=String.format("%-60s", location);
 startDate=String.format("%-10s", startDate);
 days=String.format("%-10s", days);
 price=String.format("%-10s", price);
 String holidayRecord= category+location+startDate+days+price;
 storeRecord(dataBlock, holidayID, holidayRecord);
 JOptionPane.showMessageDialog(findRecord.this,"Record updated");
 txtLocation.setText("");
 txtDays.setText("");
 txtPrice.setText("");
 }
 else
 {
 JOptionPane.showMessageDialog(findRecord.this,"Record not found");
 }
 }

Add the storeRecord() method immediately after the update() method. This method uses the same
calculation which was discussed earlier for the displayRecord() method, to determine the position
in the holidays.dat file where the updated record should be stored.

 private void storeRecord(int dataBlock, int holidayID, String holidayRecord)
 {
 try (RandomAccessFile file = new RandomAccessFile(data.holidayFile, "rw"))
 {
 int startPosition=dataBlock*1210;
 int location = holidayID %10;
 int fileposition=startPosition + location*120 + 20;
 file.seek(fileposition);
 file.write(holidayRecord.getBytes());
 file.close();
 }
 catch(IOException e)
 {
 JOptionPane.showMessageDialog(findRecord.this, "File error");
 }
 }

524 Java Programming for A-level Computer Science

Run the program and use the index tables to locate a holiday record which has been saved. Go to
the 'Find record' option, load the record and make changes to several of the fields. Click the Update
button, then close the program windows. Re-run the program and check that the record has been
updated correctly.

Close the program windows and return to the NetBeans editing screen. It just remains to add a
delete method. Use the Design tab to move to the form layout view, then double click the 'Delete
record' button to create a method. Add a line of code to call a delete() method, then insert the
delete() method immediately underneath.

 private void btnDeleteActionPerformed(java.awt.event.ActionEvent evt) {

 delete();

 }

 private void delete()
 {
 if (holidayID>=0)
 {
 int response = JOptionPane.showConfirmDialog(null,
 "Are you sure you want to delete this record?", "Confirm",
 JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);
 if (response == JOptionPane.YES_OPTION)
 {
 String holidayRecord =String.format("%-110s", "");
 storeRecord(dataBlock, holidayID, holidayRecord);
 JOptionPane.showMessageDialog(findRecord.this,"Record deleted");
 txtLocation.setText("");
 txtDays.setText("");
 txtPrice.setText("");
 }
 }
 else
 {
 JOptionPane.showMessageDialog(findRecord.this,"Record not found");
 }
 }

 Chapter 17: Indexed sequential files 525

Please note that the line beginning:
 int response = JOptionPane.showConfirmDialog(…
should be entered as a single line of code without line breaks.

The delete() method works in a very similar way to the update() method, except that a blank record
made up of 110 space characters is inserted in place of an actual record.

Run the program. Select a record using the index tables, then go to the 'Find record' page. Load the
record and click the 'Delete' button. Confirm to delete the record.

Close the program windows, then re-run the program. Check that the record has been deleted from
the corresponding data block location.

In this project we have demonstrated that a selected record can be quickly loaded from a data store
containing up to 10,000 records. This system could readily be scaled up to handle systems involving
hundreds of thousands, or even millions, of records.

